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Abstract
We present a new ultradiscretization method which does not require that
the solutions of the discrete equation have a fixed sign. We construct an
ultradiscrete analogue of the singularity confinement test using this method
and thereby propose an integrability test for ultradiscrete equations.

PACS numbers: 02.30.Ik, 87.17.−d

1. Introduction

Diverse models of natural phenomena are expressed in terms of differential equations,
difference equations and cellular automata, most of which are nonlinear and cannot be solved.
Only rarely we can find equations that are integrable, in which case there exist special properties
such as symmetries, conserved quantities or exact solutions. An intense research has been
carried out over the decades to find out what characterizes integrability and a simple way to
detect it.

One integrability criterion for ordinary differential equations is the existence of Painlevé
property. An equation whose movable singularities are at most poles is said to satisfy the
Painlevé property, in which case the equation is predicted to be integrable. This property was
considered by Fuchs for first-order nonlinear ordinary differential equations. Later, Painlevé
and Gambier extended the idea to second-order equations and found the celebrated Painlevé
equations. A subsequent application of this criterion is the Painlevé conjecture, which is an
integrability detector for partial differential equations.

In the realm of the discrete system, the notion of integrability is more ambiguous. The
singularity confinement test (SC) has been proposed in [1, 2] as an integrability detector
for discrete equations. It is predicted that a singularity of an integrable discrete equation
cancels out after a finite number of iterations without loss of information on the initial
condition, and this property is the discrete analogue of Painlevé property. Although reports
of counterexamples in [3–5] indicate that passing SC does not guarantee integrability, SC is
useful for the discovery of integrable discrete equations and is considered to be closely related
to integrability.
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Recent developments in ultradiscretization [6] have led to the research of integrability
detectors for cellular automata. Ultradiscretization is a procedure for transforming a discrete
equation into an equation in an ultradiscrete system, in which dependent variables also take
discrete values. In general, to apply this procedure, we first replace each variable (or parameter)
x of a discrete equation by a new variable X defined by x = e

X
ε where ε > 0 is a parameter.

Then in the limit ε → +0, addition and multiplication of the original variables are replaced by
max functions and addition of the new variables, respectively, by employing the identity

lim
ε→+0

ε log
(
e

X
ε + e

Y
ε

) = max(X, Y ) (1.1)

and exponential laws. One advantage of working with an ultradiscrete equation is that the
properties of the discrete equation are emphasized after taking an ultradiscrete limit. However,
ultradiscretization requires that the discrete variables have a fixed sign, and this restriction
does not allow one to transfer all properties of the discrete equation into the ultradiscrete
system. An ultradiscrete analogue of SC proposed in [7] and studied in [8] is no exception.

Ultradiscretizations without the fixed-sign constraint have been discussed in [9–11]. In
[9, 10], a new variable X defined by x = sinh(X/ε) is introduced for ultradiscretizing discrete
equations. In this paper, we extend this idea and present a new method that can be used for
constructing an ultradiscrete analogue of SC. Based on our findings, we propose a criterion
for integrability of ultradiscrete equations.

2. Ultradiscretization with parity variables

To illustrate our new ultradiscretization method, consider the first-order discrete equation
for xn:

xn+1 = axn, (2.1)

where a is a nonzero parameter. The general solution of (2.1) is given by

xn = anx0. (2.2)

Depending on the sign and magnitude of a, (2.2) is a solution growing exponentially or
decaying to zero, either monotonically or with oscillation.

For standard ultradiscretization of (2.1), we impose the constraint a, xn > 0. We then
introduce a new parameter A and a new dependent variable Xn defined by a = e

A
ε , xn = e

Xn
ε

respectively. Finally, taking the ultradiscrete limit ε → +0 of the resulting expression
transforms (2.1) into

Xn+1 = A + Xn. (2.3)

The solution to (2.3) is given by

Xn = nA + X0, (2.4)

which is precisely the expression obtained by ultradiscretizing (2.2). The ultradiscrete solution
(2.4) preserves the monotonic behaviour of (2.2), but the oscillatory behaviour is missing due
to the positive-value constraint.

To transfer all qualitative behaviours of (2.2) into the ultradiscrete system, we adopt
the following ultradiscretization procedure instead. We first introduce parity variables
σ, σn ∈ {−1, 1} and amplitude variables b, yn > 0, and write a = σb, xn = σnyn. We
further introduce a function s : {−1, 1} → {0, 1} defined by

s(τ ) :=
{

1 (τ = 1)

0 (τ = −1),
(2.5)
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and write σ = s(σ ) − s(−σ), σn = s(σn) − s(−σn). Collecting non-negative terms to each
side of equality and substituting b = e

B
ε , yn = e

Yn
ε , we can take the ultradiscrete limit of the

resulting expression to obtain the following implicit equation for σn and Yn:

max[Yn+1 + S(−σn+1), B + Yn + max{S(σ) + S(σn), S(−σ) + S(−σn)}]
= max[Yn+1 + S(σn+1), B + Yn + max{S(σ) + S(−σn), S(−σ) + S(σn)}], (2.6)

where the function S : {−1, 1} → {0,−∞} is defined by

S(τ) :=
{

0 (τ = 1)

−∞ (τ = −1).
(2.7)

We refer to this new ultradiscretization method outlined here and the corresponding
ultradiscrete equation (2.6) as ultradiscretization with parity variables and ultradiscrete
equation with parity variables, respectively. Since taking σ = σn+1 = σn = 1 reduces
(2.6) to (2.3), an ultradiscrete equation with parity variables is a generalization of the standard
ultradiscrete equation.

To find the solution to (2.6), it is more convenient to rewrite (2.6) as the following pair of
explicit equations:

σn+1 = σσn, (2.8)

Yn+1 = B + Yn. (2.9)

Denoting each point of (2.6) by Xn := (σn, Yn), we obtain the following solution:

Xn = (σ nσ0, nB + Y0). (2.10)

The case σ = −1 produces an oscillatory solution, meaning that (2.10) describes all qualitative
properties that (2.2) contains.

3. Ultradiscrete singularity confinement test

We start our discussions on ultradiscretization of SC with the notion of singularity in the
ultradiscrete system. Recall that, given a second-order discrete equation xn+1 = f (xn, xn−1),
a point xn is a singular point if ∂xn+1/∂xn−1 = 0 for a generic initial condition xn−1, and a
point xn+k (k = 1, 2, 3, . . .) is a singularity if ∂xn+k/∂xn−1 = 0. In a similar way, we define
the singularity of an ultradiscrete equation as follows.

Definition 1. A point Xn = (σn, Yn) is a singular point of a second-order ultradiscrete
equation with parity variables if Xn+1 = (σn+1, Yn+1) is indeterminate for a generic initial
condition Xn−1 = (σn−1, Yn−1). A point Xn+k = (σn+k, Yn+k)(k = 1, 2, 3, . . . ) is a singularity
if it is dependent on the indeterminacy Xn+1.

A singularity of a discrete equation generally propagates indefinitely unless, in the case of an
integrable equation, the initial condition is recovered by the appearance of an indeterminate
form in the subsequent iterations. As we shall see in the following, an ultradiscrete analogue
of this phenomenon is the appearance of a new indeterminacy at the expense of the original
singularity.

Definition 2. A second-order ultradiscrete equation with parity variables is said to pass
ultradiscrete singularity confinement test (uSC) if, iterating with an initial condition Xn−1 and
a singular point Xn, the points Xn+k and Xn+k+1 are independent of the singularity Xn+1 for
some k � 2.
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As an illustrative example, we consider the following discrete equation [8]:

xn+1x
γ
n xn−1 = axn + 1. (3.1)

If γ = 0, 1, 2, (3.1) is integrable in the sense that it belongs to the Quispel–Roberts–Thompson
(QRT) system and passes SC. In what follows, we consider only the case a > 0.

Ultradiscretizing (3.1) with parity variables for γ = 2 leads to the following equation:

max[Yn+1 + Yn−1 + max{S(σn+1) + S(σn−1), S(−σn+1) + S(−σn−1)}, A − Yn + S(−σn)]

= max[Yn+1 + Yn−1 + max{S(σn+1) + S(−σn−1), S(−σn+1) + S(σn−1)},
A − Yn + S(σn),−2Yn]. (3.2)

Provided Xn �= (−1,−A), (3.2) admits the following pair of explicit equations:

σn+1 = σn−1

[
σn

2
{1 + sgn(A + Yn)} +

1

2
{1 − sgn(A + Yn)}

]
, (3.3)

Yn+1 = max(A − Yn,−2Yn) − Yn−1, (3.4)

where the signum function sgn : R → {−1, 0, 1} is defined by

sgn(Z) :=
⎧⎨
⎩

1 (Z > 0)

0 (Z = 0)

−1 (Z < 0).

(3.5)

On the other hand, (3.3) and (3.4) are invalid if Xn = (−1,−A), in which case we find by
substitution into (3.2) that Xn+1 = (σn+1, Yn+1) where σn+1 = ±1 and Yn+1 � 2A − Yn−1. To
see how the singularity propagates, we iterate with the initial condition X0 = (σ0, F ) and
the singular point X1 = (−1,−A). It turns out that there exist various singularity patterns
depending on the value of F. In what follows, we present only the results obtained for A > 0
(the case A < 0 is similar).

The time evolution up to X6 for F > 3A is given below:

X0 = (σ0, F ) X1 = (−1,−A) X2 = (σ2, Y2), σ2 = ±1, Y2 � 2A − F

X3 = (−1, A − 2Y2) X4 = (−σ2, Y2) X5 = (−1,−A) (3.6)

X6 = (σ6, Y6), σ6 = ±1, Y6 � 2A − Y2.

In this case, the condition on F determines the time evolution beyond X2 uniquely. Singularity
is confined from X2 to X4, a new indeterminacy appears at X6 and the original singularity
disappears in the subsequent iterations. The time evolution (3.6) therefore passes uSC. In
what follows, we iterate up to the appearance of a new indeterminacy.

The time evolution for −A < F � 3A is as follows:

X0 = (σ0, F ) X1 = (−1,−A)

X2 = (σ2, Y2), σ2 = ±1, Y2 < −A
(3.7)

X3 = (−1, A − 2Y2) X4 = (−σ2, Y2) X5 = (−1,−A)

X6 = (σ6, Y6), σ6 = ±1, Y6 � 2A − Y2

X0 = (σ0, F ) X1 = (−1,−A)

X2 = (σ2, Y2), σ2 = ±1, −A < Y2 � 2A − F
(3.8)

X3 = (−σ2, 2A − Y2) X4 = (−1,−A)

X5 = (σ5, Y5), σ5 = ±1, Y5 � Y2
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In this case, there exist two singularity patterns depending on the choice of Y2. The choice
Y2 < −A gives the same pattern as that of (3.6). If Y2 > −A, a new indeterminacy appears at
X5 at the expense of the original singularity, meaning that this time evolution also passes uSC.

Finally, the time evolution for F � −A is as follows:

X0 = (σ0, F ) X1 = (−1,−A) X2 = (σ2, Y2),

σ2 = ±1, Y2 < −A X3 = (−1, A − 2Y2)
(3.9)

X4 = (−σ2, Y2) X5 = (−1,−A)

X6 = (σ6, Y6), σ6 = ±1, Y6 � 2A − Y2

X0 = (σ0, F ) X1 = (−1,−A) X2 = (σ2, Y2),

σ2 = ±1, −A < Y2 < 3A X3 = (−σ2, 2A − Y2)
(3.10)

X4 = (−1,−A) X5 = (σ5, Y5),

σ5 = ±1, Y5 � Y2

X0 = (σ0, F ) X1 = (−1,−A) X2 = (σ2, Y2),

σ2 = ±1, 3A < Y2 � 2A − F X3 = (−σ2, 2A − Y2)
(3.11)

X4 = (σ2,−4A + Y2) X5 = (−1, 3A)

X6 = (−σ2, 2A − Y2)
...

In this case, we obtain a new pattern (3.11) for Y2 > 3A in which the singularity propagates
indefinitely. This singularity pattern emerges for the following reason. Recall that the
singularity pattern for (3.1) with γ = 2 is obtained by iterating with x0 = f and x1 = −1/a+ε

where |ε| � 1. The perturbation expansion breaks down if we allow |ε| to be large, and (3.11)
corresponds to such a case.

Similar analysis has been carried out for (3.1) with γ = 0, 1 and the following integrable
discrete equation [12]:

xn+1 = axn + 1

(a + xn)xnxn−1
, (3.12)

and it has been confirmed that, for any initial condition, we obtain similar results as that of
above.

On the other hand, (3.1) with γ = 3 is not a QRT mapping and does not pass SC. In this
case, ultradiscretization with parity variables gives the following equation:

max[Yn+1 + Yn−1 + max{S(σn+1) + S(σn−1), S(−σn+1) + S(−σn−1)},−3Yn + S(−σn)]

= max[Yn+1 + Yn−1 + max{S(σn+1) + S(−σn−1), S(−σn+1) + S(σn−1)},
A − 2Yn,−3Yn + S(σn)], (3.13)

whose associated pairs of explicit equations for Xn �= (−1,−A) are given by

σn+1 = σn−1

[
σn

2
{1 − sgn(A + Yn)} +

1

2
{1 + sgn(A + Yn)}

]
, (3.14)

Yn+1 = max(A − 2Yn,−3Yn) − Yn−1. (3.15)

If Xn = (−1,−A), we are led to the singularity Xn+1 = (σn+1, Yn+1) where σn+1 = ±1 and
Yn+1 � 3A − Yn−1. The time evolution for F > 4A > 0 is given below:

5
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X0 = (σ0, F ) X1 = (−1,−A)

X2 = (σ2, Y2), σ2 = ±1, Y2 � 3A − F

X3 = (−σ2, A − 3Y2) X4 = (σ2,−A + 5Y2) (3.16)

X5 = (−1, 2A − 12Y2) X6 = (σ2,−2A + 19Y2)

X7 = (−σ2, 4A − 45Y2)
...

The singularity propagates indefinitely, which shows that (3.16) does not pass uSC. It has also
been confirmed that time evolutions for other values of F exhibit similar behaviours.

Based on our observations, we claim that integrable ultradiscrete equations have the
following property in common:

Claim 3. A second-order ultradiscrete equation with parity variables is integrable if, iterating
with an initial condition Xn−1 = (σn−1, Yn−1) and a singular point Xn = (σn, Yn), there exists
a constant C such that, for any Xn−1, every time evolution obtained by choosing Yn+1 < C (or
possibly Yn+1 > C) passes uSC.

4. Concluding remarks

In this paper, we have presented a new ultradiscretization procedure, which we call
ultradiscretization with parity variables, by the introduction of a parity variable σn and an
amplitude variable Yn. The resulting ultradiscrete equation is in implicit form but its solution
is compatible with that of the discrete equation. We insist that an ultradiscrete equation with
parity variables is a generalization of the standard ultradiscrete equation and our new method
can be applied to a wider class of discrete equations.

The crucial point of SC is how the information on the initial condition is recovered. In the
ultradiscrete system, this corresponds to the appearance of a new indeterminacy at the expense
of the original singularity. Although we have studied only a handful of equations in this
paper, we insist that such a phenomenon is common to all integrable ultradiscrete equations.
Just as in the discrete case, further applications of uSC may include non-autonomizing an
autonomous ultradiscrete equation or testing an ultradiscrete soliton equation for singularity
confinement.

It must be pointed out, however, that uSC is nothing but an ultradiscrete analogue of SC.
Consequently, whether our new integrability criterion is necessary or sufficient for integrability
remains questionable. It may be important to study the concept of growth for ultradiscrete
equations [8, 13]. We conclude this paper by insisting that, just as in the discrete case, uSC is
closely related to integrability of ultradiscrete equations.
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